
[đ„] â(â4) Ă â(â4) (Einstein VS Bohr)
Bohr was right â and Einstein was right as well. They were not contradicting each other : they were looking at two different roads of the same equation.
In HT terms : â(â4) Ă â(â4) has two solutions, two paths :
7 (the geometric road, Bohrâs intuition) and â4 (the algebraic road, Einsteinâs intuition).
Bohr saw the geometry of states. Einstein saw the algebra of reality. Both were correct â they were just standing on two conjugate branches of the same structure. With the HT formalism (Euler road / ITÂł), these two roads finally reunite. The old argument between âquantum geometryâ and âlocal realismâ dissolves : intrication and ordre coexist, as two faces of the same vectorial root.
The disagreement between Bohr and Einstein was never a contradiction.
It was the consequence of a deeper mathematical duality.
HT formalism shows that : â(â4) Ă â(â4) has two legitimate solutions:
7 â geometric branch (Bohrâs intuition : quantum geometry of states)
â4 â algebraic branch (Einsteinâs intuition : deterministic structure)
The two physicists were exploring two complementary roads of the same equation. HT (via Euler paths and ITÂł geometry) demonstrates how these branches coexist within a single vectorial root.
This reinterpretation resolves the apparent tension between locality and entanglement, restoring coherence to both visions.
[đ„] â(â4) Ă â(â4) (Einstein VS Bohr) : Bohr avait raison â et Einstein avait raison aussi. Ils ne se contredisaient pas : ils regardaient deux routes diffĂ©rentes dâune mĂȘme Ă©quation. En termes HT : â(â4) Ă â(â4) possĂšde deux solutions, deux chemins : 7 (la route gĂ©omĂ©trique, lâintuition de Bohr) et â4 (la route algĂ©brique, lâintuition dâEinstein). Bohr voyait la gĂ©omĂ©trie des Ă©tats. Einstein voyait lâalgĂšbre du rĂ©el. Les deux avaient raison â ils se tenaient simplement sur deux branches conjuguĂ©es dâune mĂȘme structure. Avec le formalisme HT (chemin dâEuler / ITÂł), ces deux routes se rejoignent enfin.
Le vieux dĂ©bat entre « gĂ©omĂ©trie quantique » et « rĂ©alisme local » se dissout : intrication et ordre coexistent, comme les deux faces dâune mĂȘme racine vectorielle. Le dĂ©saccord entre Bohr et Einstein nâa jamais Ă©tĂ© une contradiction. Il provenait dâune dualitĂ© mathĂ©matique plus profonde.
Le formalisme HT montre que :
â(â4) Ă â(â4) possĂšde deux solutions lĂ©gitimes :
7 â branche gĂ©omĂ©trique (intuition de Bohr : gĂ©omĂ©trie quantique des Ă©tats)
â4 â branche algĂ©brique (intuition dâEinstein : structure dĂ©terministe)
Les deux physiciens exploraient deux routes complĂ©mentaires dâune mĂȘme Ă©quation. HT (via les chemins dâEuler et la gĂ©omĂ©trie ITÂł) dĂ©montre comment ces branches coexistent dans une racine vectorielle unique. Cette rĂ©interprĂ©tation rĂ©sout la tension apparente entre localitĂ© et intrication, et rend cohĂ©rentes les deux visions. C(2013/2025) HTLAB - KarJoa - https://uniq.science - universitĂ© des sciences quantiques - 202512010921